Plasmonic enhancement of second harmonic generation on metal coated nanoparticles.

نویسندگان

  • Sarina Wunderlich
  • Ulf Peschel
چکیده

Second Harmonic Generation (SHG) is a widely used tool to study surfaces. Here we investigate SHG from spherical nanoparticles consisting of a dielectric core (radius 100 nm) and a metallic shell of variable thickness. Plasmonic resonances occur that depend on the thickness of the nanoshells and boost the intensity of the Second Harmonic (SH) signal. The origin of the resonances is studied for the fundamental harmonic and the second harmonic frequencies. Mie resonances at the fundamental harmonic frequency dominate resonant effects of the SH-signal at low shell thickness. Resonances excited by a dipole emitting at SH frequency close to the surface explain the enhancement of the SHG-process at a larger shell thickness. All resonances are caused by surface plasmon polaritons, which run on the surface of the spherical particle and are in resonance with the circumference of the sphere. Because their wavelength critically depends on the properties of the metallic layer SHG resonances of core-shell nanoparticles can be easily tuned by varying the thickness of the shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells

In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...

متن کامل

Large enhancement of second-harmonic generation in subwavelength metal-dielectric-metal plasmonic waveguides

Plasmonic waveguides have shown the potential to guide subwavelength optical modes, the so called surface plasmon polaritons, at metal-dielectric interfaces. In particular, a metal-dielectric-metal (MDM) structure supports a subwavelength propagating mode at a wavelength range extending from DC to visible. Thus, such a waveguide could be important in providing an interface between conventional ...

متن کامل

Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films.

We have demonstrated large enhancements of the effective second-order nonlinear susceptibility (chi(2)) of ionic self-assembled multilayer (ISAM) films, causing a film with just 3 bilayers to be optically equivalent to a 700-1000 bilayer film. This was accomplished by using nanosphere lithography to deposit silver nanoparticles on the ISAM film, tuning the geometry of the particles to make thei...

متن کامل

High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 21 16  شماره 

صفحات  -

تاریخ انتشار 2013